Growth mixture modeling: Analysis with non-Gaussian random effects
نویسندگان
چکیده
6.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملGeneral growth mixture modeling for randomized preventive interventions.
This paper proposes growth mixture modeling to assess intervention effects in longitudinal randomized trials. Growth mixture modeling represents unobserved heterogeneity among the subjects using a finite-mixture random effects model. The methodology allows one to examine the impact of an intervention on subgroups characterized by different types of growth trajectories. Such modeling is informat...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملModeling and Estimation of Dependent Subspaces with Non-radially Symmetric and Skewed Densities
We extend the Gaussian scale mixture model of dependent subspace source densities to include non-radially symmetric densities using Generalized Gaussian random variables linked by a common variance. We also introduce the modeling of skew in source densities and subspaces using a generalization of the Normal Variance-Mean mixture model. We give closed form expressions for subspace likelihoods an...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کامل